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We provide k ·p formalism within the full-potential linearized augmented plane-wave �LAPW� method.
Unlike the pure plane waves, the LAPW functions do not behave trivially in moving from k to k+q and their
incompleteness as a basis set should be taken into account. Derivatives of the sphere matching coefficients play
the key role, for which we find a simple formula. Concrete formula for the k ·p matrix elements is derived and
numerically tested. Generalized second-order perturbation theory allowing for a degenerate case is presented
and the literally exact electronic band gradients and curvatures are accessible.
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I. INTRODUCTION

k ·p method1 was founded a long time ago to examine the
properties of electronic energy bands of a periodic solid. It
had been widely used as an aid to parametrize the energy-
band structure from the experimental observables such as
effective masses and energy-band gaps.2 Now it is receiving
revived interests from the society of modern first-principles
electronic structure calculations.3–12 Let us recapitulate the
k ·p method to see its advantage and usefulness and at the
same time to point out a hindered problem in applying it to
the first-principles calculations. From the Bloch theorem, the
wave functions at k+q can be put in the form of

�k+q�r� = eiq·r�k�r� , �1�

where �k carries the crystal momentum k. The k ·p Hamil-
tonian H, which determines �k and the eigenvalues E�k
+q�, is defined in terms of the original Hamiltonian H as

H = e−iq·rHeiq·r = H + q · v + q2/2m , �2a�

v = − i�r,H� . �2b�

The last equality in Eq. �2a� is valid for Schrödinger and
Pauli-type H with the effective potential being in a local
form. The function �k is expandable in terms of a complete
set of Bloch waves at k. In the conventional derivation of
textbook k ·p formula,1 � is expanded by the wave functions
at k as

�k = �
i

�ikCi. �3�

Admitting Eq. �3�, the secular equation � jHijCj =E�k+q�Ci
comes with very simple matrix elements

Hij = Ei�k��ij + q · vij +
q2

2m
�ij , �4a�

vij = ��ik�v�� jk� . �4b�

Hence by tabulating the matrix elements of v in terms of the
wave functions at the reference point k, one can immediately
discuss arbitrary k+q points. This is the great advantage of
the k ·p method over the usual non-k ·p calculations,5–7 in
which one has to repeat the cumbersome procedure of setting

up the Hamiltonian and overlap matrices for each k point.
Furthermore, since q can be any like a complex vector, the
k ·p method can be applied to the complex band-structure
problem.8–10 In discussing the close vicinity of a given k,
one can regard the q-dependent terms in Eq. �4a� as a
perturbation acting on the eigenstates at k �En�k� ,�nk�. The
first- and second-order perturbation theories provide the ex-
pressions of Taylor-expansion coefficients of En�k+q� to
second order in q. The electronic band energy gradient �or
the group velocity� and the curvature �or the inverse
effective-mass tensor�, both of which are important quanti-
ties in discussing the transport properties, are obtained with-
out relying on any numerical procedure of fitting the energy
bands.11 The analytical expression of En�k+q� from the k ·p
perturbation may enable one to construct an efficient
Brillouin-zone �BZ� integration scheme.3 Our specific moti-
vation for the k ·p method comes from the following origin.
We are currently extending our band-structure calculation
code, which is based on the full-potential linearized aug-
mented plane-wave �APW� �LAPW� �FLAPW� �Refs.
13–16� method, to realize GW-approximation17 calculations.
To get the GW self-energy, we ought to evaluate the q→0
limit of

��nk�e−iq·r��m,k+q���m,k+q�eiq·r��n�k�/q2. �5�

In other words, an expression for quadratic q expansion of a
function �=e−iq·r�k+q is needed. This may be achieved by
applying the second-order k ·p perturbation theory. In what
follows, we refer to Eqs. �3� and �4� as the “standard” k ·p
formula.

To incorporate the k ·p approach in the first-principles
calculations, one needs to be aware of the problem arising
from the use of an incomplete basis-function set �IBS�. If �’s
are true wave functions of H, the ansatz �3� exactly holds. In
practical calculations, however, we obtain �ik variationally.
It is expanded in terms of a certain incomplete basis set
	���k ,r�
 and hence 	�ik
 would never be a complete set at
k. Instead of Eq. �3�, we must consider the adequate Hilbert
space for the function �k. It should, from the variational
space for �k+q, be spanned by the following functions:

���k,q,r� � e−iq·r���k + q,r� . �6�

If plane waves are used as the basis functions �the subscript
� is then a reciprocal-lattice vector G�, ansatz �3� exception-
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ally stands. A function �G�k ,q ,r� turns out to be a basis
function at k, �G�k ,r�. Thus the space 	�G�k�
 or the
equivalent space 	�ik
 provides necessary and sufficient
space for �k even with a practical truncation of �k+G�
�Gmax.

For those IBS, which do not have the property of

	���k,q,r�
 = 	���k,r�
 , �7�

one should consider Eq. �6� as the basis function for �. By
rotating it with the eigenvectors at k, Z�i�k�, we have

�̃ik�q,r� = �
�

���k,q,r�Z�i�k� , �8�

which is labeled by the eigenstates at k and is to be substi-
tuted for �ik in Eq. �3�. As a result, the matrix elements of
Eq. �4� will undergo some modifications, which we shall call

IBS corrections. In practice, �̃’s or the matrix elements of H
are to be expanded in power series of q and truncated at
some order, which we designate as Nkp. By tabulating in
advance the Taylor-expansion coefficients of the matrix ele-
ments at the reference k, we can perform k ·p-like calcula-
tions. This type of solution to the IBS problem was first
proposed by the community of the empirical tight-binding
method.18,19 It is to start from the usual secular equation at
k+q and Taylor expand the Hamiltonian matrix elements
H����k+q�, from which they find effective k ·p corrections
to the energies. Our discussion above might be regarded as a
reformulation of their method by clarifying the basis set for
�.

The aim of this paper is to derive an LAPW k ·p formula
that explicitly contains the IBS corrections and enables effi-
cient k ·p calculations within the FLAPW methodology. We
examine the property of LAPW functions �G�k ,r� when k is
moved to k+q. The key factor is the k dependency of the
augmentation functions, from which the IBS corrections are
introduced. It is found that this k dependency can be de-
scribed by a simple transformation matrix U. We formulate
the IBS corrections in terms of U, which are easy to calculate
in a manner similar to the usual FLAPW procedure. Details
of the FLAPW method in the muffin-tin �MT� sphere region,
such as the use of the scalar-relativistic theory of Koelling
and Harmon20 and the inclusion of spin-orbit coupling, are to
be reflected automatically in our LAPW k ·p formula. The
overall accuracy is controlled by the truncation order Nkp of
the q expansion.

Related to the present topic, we should mention two major
previous works. One is by Krasovskii and Schattke,5–10

which has close connection to the present method. They have
been working to bring in the k ·p approach into the FLAPW
scheme. They noticed that the LAPW basis set does not have
the property �7�. Rather than deriving the IBS corrections,
they increased variational degrees of freedom by adding lo-
calized functions inside the MT sphere region and con-
structed the extended LAPW �ELAPW� basis set. This en-
ables k ·p calculations with the standard k ·p formula to the
satisfactory accuracy at the expense of increased computa-
tional efforts due to the enlarged size of the basis set. They
modified the treatment of relativity7 since the scalar-

relativistic theory by Koelling and Harmon,20 which is
widely used in FLAPW method, does not fit to their method.
This method has been successfully used for a wide variety of
applications. The other was done by Pickard and Payne.4

They have derived a second-order k ·p expression to be used
for Vanderbilt’s ultrasoft pseudopotentials. In this case, the
IBS problem does not take place since the basis functions are
plane waves while the use of a nonlocal potential and an
overlap operator in the Kohn-Sham equation brought the
complexity to their formula.

It should also be noted that the standard k ·p formula has
been used in the APW �Refs. 21–23� and LAPW
calculations12 by overlooking the IBS problem and without
adding the extra variational degrees of freedom. This yields
catastrophic results if applied to localized states as will be
shown in Sec. III.

The rest of this paper is organized as follows. We intro-
duce the formalism in Sec. II, test it by actual numerical
calculations in Sec. III, and present our conclusions in Sec.
IV. A discussion on the Hermiticity of Hamiltonian matrix
and a derivation of the generalized perturbation theory are
given in Appendixes A and B.

II. FORMALISM

A. Property of LAPW functions

The LAPW basis-function set 	�G�k ,r�
 is one of the best
suited basis sets to represent all-electron nodal wave func-
tions. It is optimized to a given nucleus geometry through its
atomic-position-dependent augmentation. It is also optimized
to a given k, at which we are to solve the single-electron
problem, with the augmentation function depending on k in a
nontrivial way. The former dependency is well known to
yield the IBS corrections in the atomic force formula.24 The
latter gives rise to an LAPW-specific k ·p formula.

In the LAPW approach, the space is partitioned into the
nonoverlapping MT sphere region and the interstitial �I� re-
gion. In the I region, the LAPW function is just a plane-
wave, �G�k ,r�=	−1/2ei�k+G�·r, where 	 is the unit-cell vol-
ume. Inside the tth MT sphere, it may be expressed by

�G�k,r� = ei�k+G�·t�
L

YL�r̂t��atL�k + G�utl�rt�

+ btL�k + G�u̇tl�rt��, rt � St,

where St and t are the MT radius and position of atom t,
respectively, rt=r− t, and L is a combined index L= �lm�.
The radial function ul and its energy derivative u̇l satisfy the
equations HMTulYL=
lulYL and HMTu̇lYL= �ul+
lu̇l�YL with
HMT being the spherical part of H. To simplify the notation
we shall omit the atom index t of a, b, u, and u̇ unless it
brings ambiguity. Further, to have brief formulas, we intro-
duce an index ��=1,2�, and let �a� ,u�� represent �a ,u� and
�b , u̇�, for �=1 and �=2, respectively. The LAPW function
inside the tth sphere is rewritten as

�G�k,r� = ei�k+G�·t�
L�

aL��k + G��L��rt� , �9�
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�L��r� = ul��r�YL�r̂� . �10�

Although the conventional definition of the matching coeffi-
cients aL� includes the atomic Bloch phase factor ei�k+G�·t, we
have separated it out for ease in analyzing the property of
LAPW functions. These aL�’s are determined by imposing
the continuity with the I expression on the MT sphere up to
the first derivative in terms of rt. Rayleigh expansion of the I
expression about the atom t reads

�G�k,r� = ei�k+G�·t�
L

JL�k + G,rt�YL�r̂t� , �11�

JL�K,r� = 4	−1/2iljl�Kr�YL
��K̂� , �12�

where jl stands for the spherical Bessel function. Matching
of the I and MT expressions is given by their radial parts of
each L. This leads to at arbitrary K

JL�K,S� = �
�

aL��K�ul��S� , �13a�

JL��K,S� = �
�

aL��K�ul�� �S� , �13b�

and the coefficients are found as

aL��K� =
�− ��+1

�u̇l,ul�S

�ul�̄�r�,JL�K,r��S, �14�

where the square brackets denote the Wronskian

�f�r�,g�r��S = f�S�g��S� − f��S�g�S�

and we introduced an auxiliary index �̄�=2,1�, which repre-
sents the counterpart of ��=1,2�.

Having the definition of LAPW function, we think about
the basis functions for � defined by Eq. �6�. The property �7�
is seen only in the I region. Therefore

�G�k,q,r�

= e−iq·r�G�k + q,r�

= �	−1/2ei�k+G�·r, r � I

e−iq·rtei�k+G�·t�L�aL��k + q + G��L��rt� , rt � St


�15�

Note in the sphere expression that the atomic phase factor
returns to that at k. However, there is no way that
e−iq·rtaL��k+q+G� returns to aL��k+G�. Among the
q-dependent factors e−iq·rt and aL�, we shall leave the former
and Taylor expand only the latter in terms of q that needs the
knowledge of K derivatives of aL��K�. From Eq. �14�, this
can be attained once the K derivatives of JL�K ,S� and
JL��K ,S� are found. Consider an identity ei�q+K�·r=eiq·reiK·r,
Rayleigh expand each plane wave except eiq·r, multiply YL

�

from the left, and perform the angular integration. Then we
have

JL�q + K,r� = �
L�

JL��K,r�� YL
��r̂�eiq·rYL��r̂�dr̂ .

By Taylor expanding J�q+K� and eiq·r, we equate each co-
efficient of first-order q moments. This yields a formula for
the K derivative of J. With �= 	x ,y ,z
,

JL
����K,r� �

�JL�K,r�
�K�

= ir�
L�

�YL��̂�YL��JL��K,r� , �16�

where the symbol �̂ on the right-hand side denotes r̂�. The
point is that the procedure of taking K derivative of J�K�,
which would be cumbersome, is now replaced by the proce-
dure of summing up J’s that have the same K argument,
which is much easier to pursue. By combining Eqs. �14� and
�16� and further by using Eq. �13�, we have, for the K de-
rivative of aL�,

aL�
����K� �

�aL��K�
�K�

= �
L���

UL�,L���
��� aL����K� �17a�

with

UL�,L���
��� = i�YL��̂�YL��Wl�,l��� �17b�

and

Wl�,l��� =
�− ��+1

�u̇l,ul�S

�ul�̄,rul����S

=
1

�u̇l,ul�S
� �u̇l,rul��S �u̇l,ru̇l��S

− �ul,rul��S − �ul,ru̇l��S
� . �17c�

It states that the K derivative of aL��K� is expressible by a
linear combination of aL����K�’s with l�= l�1. It is notable
that the coefficients for this linear combination, U���, do not
depend on K. They are determined solely from Gaunt’s co-
efficients �YL��̂�YL�� and the matrix W, whose elements are
made of the values of the radial functions at r=S. In the
definition of W �Eq. �17c�� its � dependence is presented in
matrix form. For instance, the element with �=��=1 is cal-
culated as

�u̇l,rul��S = u̇l�S�ul��S� + S�u̇l,ul��S.

Using Eq. �17�, we can express the Taylor expansion of
a�q+K� as

a��q + K� = �1 + q · �K +
1

2
�q · �K�2 + ¯�a��K�

= �
��
�1 + q · U +

1

2
�q · U�2 + ¯�

���
a���K�

= �
��

�eq·U����a���K� , �18�

where � is a combined index �= �L��, 1 is a unit matrix, and
q ·U is an abbreviation of ��q�U���. Provided that the aug-
mentation inside the MT sphere is truncated at lmax and that
we like to have the q expansion of aL� to the order of Nkp, the
Gaunt coefficient in U indicates that we may need to prepare
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aL� up to lmax+Nkp for the right-hand side of Eq. �18�. The
extra aL�’s �l� lmax�, which do not exist in usual calculations,
are taking a role of storing the necessary JL�S� and JL��S�. In
the present realization of the method, to ensure the full ac-
curacy in the first- and second-order coefficients of the q
expansion, we generate JL and JL� up to lmax+2 and make the
extra aL�’s from Eq. �14� with the values of ul��S� and ul�� �S�,
which are arbitrary, set up as those at lmax. Thus we construct
U��� in the l space of �lmax+2, lmax+2�.

We return to Eq. �15� and convert it into the form of Eq.
�8�. Utilizing Eq. �18� and redefining the zeroth-order match-
ing coefficients, which now include the atomic phase factor

A��k + G� � ei�k+G�·ta��k + G� ,

A�i�k� = �
G

A��k + G�ZGi�k� ,

we have

�̃ik�q,r� = �
G

�G�k,q,r�ZGi�k�

= ��ik, r � I

e−iq·rt�������rt��eq·U����A��i�k� , rt � St.

�19�

This �̃ik forms the basis set of the present LAPW k ·p
method. It possesses q dependency in the MT region through
the head factor e−iq·rt and the decomposition of the matching

coefficients. At zeroth order in q, �̃ik coincides with �ik

throughout the entire space. At higher orders, �̃ik is finite
only in the MT region and it has zero value and zero slope on
the MT sphere. For practical purpose, Eq. �19� may be ap-
proximated here by Taylor expanding the sphere expression
in terms of q. Rather than doing so, we proceed with the

following strategy: for any operator Ô we first derive its

rigorous matrix representation in terms of the exact �̃,

Oij�q�= ��̃ik�q��Ô��̃ jk�q��, and then we expand Oij�q� up to a
given truncation order Nkp. In Sec. II B, we will deal with the
most important operator: the k ·p Hamiltonian H.

B. k·p Hamiltonian and its representation

We give here the explicit form of the k ·p Hamiltonian
H=e−iq·rHeiq·r and provide its matrix representation in terms

of the basis functions �̃ik. In the I region, kinematics is usu-
ally treated nonrelativistically. Unless the effective potential
is in nonlocal form, H in the I region is given by Eq. �2� with
the nonrelativistic velocity operator

v = − i � /m . �20�

In tth MT region, H is written as

H = e−iq·�rt+t�Heiq·�rt+t� = e−iq·rtHeiq·rt, rt � St. �21�

We cannot proceed further from the above if the scalar-
relativistic theory of Koelling and Harmon is employed in H.

Their kinetic-energy operator T̂S does not have an explicit

form except in acting on u or u̇. We cannot valuate

e−iq·rtT̂Seiq·rt nor the commutator �rt , T̂S� as was discussed by
Krasovskii and Schattke and this is the reason why they had

to give up the use of T̂S. In the present method, however, this
is not problematic at all. In constructing secular equation for
�, the factors on both sides of H are canceled out with the

head factor e−iq·rt in our basis function �̃. Thus we leave Eq.
�21� as it is.

By inserting �=� j�̃ jkCj into the equation H�=E�, we
have a secular equation � j�Hij −E�k+q�Sij�Cj =0. Although
the zeroth-order wave functions 	�ik
 are orthonormalized,

	�̃ik
 are not due to the q-dependent terms in the MT region.
The eigenvalue problem is generalized. The contribution
from the I region to Hij and Sij is

��̃ik�H��̃ jk�I = Ei�k��ij + q · vIij − ��ik�H�� jk�MT

+
q2

2m
��ij − ��ik�� jk�MT� ,

��̃ik��̃ jk�I = �ij − ��ik�� jk�MT

with

vIij = ��ik�v�� jk�I. �22�

The matrix element �22� is easy to calculate by taking ana-
lytical derivative of the plane-wave representation of �ik and
by using the step function and fast Fourier transforms �FFT�.
The sphere subtraction terms are calculated by the usual
FLAPW procedure. Construct h�0� and o�0� for each atom,
which is an eigenstate-independent small matrix of H and
overlap matrix in terms of the atomic basis ��, respectively,
as

hL�,L���
�0� = �L��H�L����t, �23a�

oL�,L���
�0� = �L��L����t = �LL������ul��ul�� . �23b�

This o�0� in the �L�� space is a diagonal matrix since
�ul � u̇l�=0. Refer to Appendix A to have the actual formulas
of Eq. �22� and the HMT part in Eq. �23a�, in which the
LAPW Hermiticity problem is circumvented. Having h�0�

and o�0�, we calculate

��ik�H�� jk�MT = �
t

�
���

A�i
� �k�h���

�0� A��j�k� ,

��ik�� jk�MT = �
t

�
�

A�i
� �k�o�

�0�A�j�k� .

From Eqs. �19� and �21�, the MT contribution to Hij and Sij
is expressed similarly but with h�0� and o�0� being trans-
formed as follows:

��̃ik�H��̃ jk�MT = �
t

�
���

A�i
� �k��h�q�����A��j�k� ,
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��̃ik��̃ jk�MT = �
t

�
���

A�i
� �k��o�q�����A��j�k�

with

h�q� = �eq·U�†h�0�eq·U, �24�

o�q� = �eq·U�†o�0�eq·U. �25�

Putting together the I and MT contributions, we obtain the
rigorous expression for the k ·p matrices H and S as follows:

Hij = Ei�k��ij + q · vIij +
q2

2m
��ij − ��ik�� jk�MT�

+ �
t

�
���

A�i
� �k��h�q� − h�0�����A��j�k� , �26�

Sij = �ij + �
t

�
���

A�i
� �k��o�q� − o�0�����A��j�k� . �27�

By Taylor expanding h�q� and o�q�, we can have a useful
expression for practical calculations, in which the q depen-
dency is fully extracted out. If we write

h�q� = h�0� + �
�

q�h��� +
1

2�
��

q�q�h���� + ¯ ,

the Taylor-expanded components are found as

h��� = �U����†h�0� + h�0�U���, �28a�

h���� = �U����†h��� + h���U���, �28b�

h����� = �U����†h���� + h����U���. �28c�

Namely, they can be constructed sequentially from the low-
est order by multiplying U��� by the Taylor components of
the preceding order. Now we rearrange H and S in the form
of

Hij = Hij
�0� + �

�

q�Hij
��� +

1

2�
��

q�q�Hij
���� + ¯ , �29�

Sij = Sij
�0� + �

�

q�Sij
��� +

1

2�
��

q�q�Sij
���� + ¯ . �30�

Then for H we have

Hij
�0� = Ei�k��ij , �31a�

Hij
��� = hij

��� + vIij,�, �31b�

Hij
���� = hij

���� + �����ij − oij
�0��/m , �31c�

Hij
����� = hij

����� �31d�

with a trivial definition of

hij
�g� = �

t
�
���

A�i
� �k�h���

�g� A��j�k�, g = 	0,�,��,���, . . .
 .

In H�g� higher than second order, only the MT contribution
h�g� exists. The overlap components S�g� are all expressed by

the MT term except for g=0. Defining the MT overlap ma-
trix oij

�g� in the same way as for hij
�g�, we have

Sij
�g� = � �ij , g = 0,

oij
�g�, g � 0.

 �32�

The explicit formulas of our basis functions �Eq. �19�� and
the k ·p matrices �26� and �27� and their Taylor-expanded
expressions �Eqs. �31� and �32�� constitute the central result
of the present work. We refer to them as the LAPW k ·p
formula or simply the present k ·p formula.

Actual procedures of the present LAPW k ·p calculations
are as follows. From Eq. �28�, we preprocess the matrices
h�g� and o�g� in the atomic �L�� basis up to the truncation
order Nkp. Computational efforts for it can be reduced by
making use of the sparseness of U. At a reference k, we
calculate and store the k ·p matrices Hij

�g� and Sij
�g�. We can use

them for variational k ·p calculations at arbitrary k+q that
involve the numerical diagonalization procedure. For very
small q or for getting the electronic band gradients and cur-
vatures, we can rely on the perturbation theory, whose pre-
scription will be given in Sec. II C.

C. Second-order k·p perturbation

In dealing with the close vicinity of a given k, we may
rely on the second-order perturbation theory. We shall write
the first- and second-order terms of H and S in the following
way:

H�1� = �
�

q�H���, H�2� =
1

2�
��

q�q�H����,

S�1� = �
�

q�S���, S�2� =
1

2�
��

q�q�S����,

and consider them as a perturbation acting on the eigenstates
at k and derive the first- and second-order changes in energy.
One may suppose that this is an elementary task. However,
we have the overlap matrix and the perturbation theory for
the generalized eigenvalue problem is not widely discussed.
Thus some explanation seems to be needed here.

Pickard and Payne4 derived the generalized second-order
perturbation formulas restricted to a nondegenerate band.
According to that a state n at k would have the following
energy shift:

En
�1� = Hnn

�1� − En
�0�Snn

�1�, �33a�

En
�2� = Hnn

�2� − En
�0�Snn

�2� − En
�1�Snn

�1�

+ �
j��n�

�Hnj
�1� − En

�0�Snj
�1���Hjn

�1� − En
�0�Sjn

�1��
En

�0� − Ej
�0� , �33b�

where En
�0� stands for En�k�.

We consider here a general case that the state �nk falls in
M-fold degenerate states with the same eigenvalue EM

�0�. The
eigenfunctions within the subspace M have arbitrariness
since any unitary transformation within M is allowed.
Among such infinite possibilities we have to find out one set,
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in which each state is continuously connected to one of the
perturbed wave functions under the adiabatic switching on of
the perturbation and thus can be named the “zeroth-order
wave function.” We shall write this transformation from the
original “naive” eigenfunctions 	��k
 into the physically rel-
evant zeroth-order wave functions as

�nk = �
��M

��kC�n
�0�. �34�

This C�0� may be deduced by the projection-operator tech-
nique with the compatibility relation of k and k+q.1 It is
noted that for a given k, the q dependency of C�0� is only
through its cosine q̂. C�0� can also be found by dealing nu-
merically with the energy matrices given below. Refer to
Appendix B for the detailed derivation.

At k we consider the following energy matrices within the
subspace M, which can be regarded as a simple extension of
Eq. �33�:


���
�1� = H���

�1� − EM
�0�S���

�1� = �
�

q�
���
��� , �35a�


���
�2� = H���

�2� − EM
�0�S���

�2� − �
���M

�S���
�1�


����
�1� + 
���

�1� S����
�1� �/2

+ �
j�M

�H�j
�1� − EM

�0�S�j
�1���Hj��

�1� − EM
�0�Sj��

�1� �

EM
�0� − Ej

�0�

=
1

2�
��

q�q�
���
���� �35b�

and we calculate and store their Taylor coefficients 
���
��� and


���
����. Note that the bases of these matrices are labeled by the

original eigenfunction � and we need not know C�0� at this
stage.

When q is specified, we construct 
�1� and 
�2� and pro-
ceed with the exact analogy with the usual degenerate per-
turbation theory.19 We first diagonalize 
�1� and obtain the
eigenvectors. If the degeneracy is fully lifted, these eigenvec-
tors provide C�0�. If not, we have to continue to the second-
order process: we transform 
�2� via the eigenvectors of 
�1�,
pick up each submatrix where the degeneracy remains, and
diagonalize it to have the final eigenvectors. By mapping
these two processes onto a single �→n transformation, we
obtain C�0�. The first- and second-order changes in energy for
the state n are expressed by

En
�1� = �C�0�†
�1�C�0��nn, �36a�

En
�2� = �C�0�†
�2�C�0��nn. �36b�

The electronic band energy gradient and curvature are de-
fined for this split-off band and they are given by

��En�k� = �C�0�†
���C�0��nn, �37a�

����En�k� = �C�0�†�
���� + 
�����C�0��nn/2. �37b�

D. Wave function

We shortly bring up the k ·p wave function � with envi-
sioning its practical use. It is written as

�m = �
i

�̃ik�q,r�Cim�q� . �38�

If we use the second-order k ·p perturbation theory, C is
obtained in the form

Cim = Cim
�0� + �

�

q�Cim
��� +

1

2�
��

q�q�Cim
����. �39�

Actual formulas of C�g� can be found from Appendix B. In
addition to C, we ought to exercise care in the q dependency

of �̃ik. As a particular example, we consider the following
quantity appeared in Eq. �5�:

Inmk�q� = ��nk�e−iq·r��m,k+q� = ��nk��m�

= �
i

��nk��̃ik�q��Cim�q� . �40�

From Eq. �19�, we can write

��nk��̃ik�q�� = �ni + �
t

�
���

A�n
� �k��R�q�eq·U − o�0�����A��i�k�

�41�

with a matrix R defined in the atomic basis

RL�,L����q� = ��L��e−iq·rt��L����t. �42�

The Taylor-expansion coefficients of R�q� are

RL�,L���
�0� = oL�,L���

�0� = �LL������ul��ul�� , �43a�

RL�,L���
��� = − i�L��̂�L���ul��r�ul���� , �43b�

RL�,L���
���� = �− i�2�L��̂�̂�L���ul��r2�ul���� . �43c�

Hence, besides U, it is necessary to calculate R�q� or R�g�’s,
the matrices of r moments. Taylor-expansion coefficients of
Eq. �40� are to be expressed by those of R, exp�q ·U�, and C.

In calculating valence charge density, where ���2 is rel-

evant, the head factor e−iq·rt in �̃ik is canceled and the q
dependency of ���2 is determined by U and C.

III. TESTS OF THE LAPW k·p FORMULA

To demonstrate how our method works, we present actual
calculations for Si and Cu. Usual density-functional self-
consistent field �SCF� calculations were performed with
scalar-relativistic FLAPW method. For exchange-correlation
functional we employed the local density approximation. En-
ergy cutoffs were 20 and 100 Ry for the LAPW basis func-
tions and the star functions of the effective potential, respec-
tively. Inside the MT spheres, the expansion in terms of
spherical harmonics was truncated at lmax=8 for the wave
function, charge density, and effective potential. The MT ra-
dii were chosen as 1.15 Å. The BZ integration was per-
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formed by using the improved tetrahedron method25 with
�8,8,8� mesh points for Si and �16,16,16� for Cu.

Under the converged SCF potential, at a particular k that
we chose as a reference point of the k ·p method, we calcu-
lated full eigenspectrum �Ei ,�i� and constructed the k ·p ma-
trices Hij

�g� and Sij
�g� with their size being equal to the number

of LAPW basis functions at this k. One may reduce this size
in practical k ·p calculations. Here, in order to monitor fun-
damental errors if exist, it was necessary not to deteriorate
the degrees of variational freedom of �.

Figure 1 shows the energy-band structure of Si obtained
from the variational k ·p calculation. There � was chosen as
the reference point. The k ·p matrices were constructed to
second order based on the present LAPW k ·p formula and

were numerically diagonalized along high-symmetry lines.
The agreement with the exact result is quite good except
along the S line �2 /a��� ,� ,0� with 3 /4���1, which is
located far from �. By increasing the truncation order of the
IBS corrections, we can systematically improve the agree-
ment. In the next place we fed the k ·p matrices into the
second-order perturbation method described in Sec. II C and
Appendix B. Produced band energies along several high-
symmetry lines from several reference points were compared
with the exact ones and we calculated the root-mean-square
error ��E�. In Fig. 2 we plot ��E� /q3 as a function of q. If the
band gradients or curvatures from the present k ·p formula
have a margin of error, ��E� /q3 would diverge in q→0. Such
behavior is not seen in Fig. 2 and we conclude that our
formula is valid. It might be interesting to see the conse-
quence of using the standard k ·p formula �Eq. �4��. We con-
structed the k ·p Hamiltonian matrix based on Eq. �4� at
several reference points and performed the second-order per-
turbative calculations. The resultant error was analyzed in
Fig. 3. Note that we plot ��E� /q2 instead of ��E� /q3. The red
and blue solid lines diverge in q→0, which means that the
gradients at X along � and the gradients at K along � contain
some errors. Other plots reach nonzero values in q→0, in-
dicating that the curvatures are neither accurate. In Tables I
and II we list the values of the band gradients and curvatures
at X obtained by the first- and second-order k ·p perturba-
tions and make a comparison between the present and stan-
dard k ·p results. The error of the standard k ·p results in the
band gradient is very small and might be attributed to the
inconsistency in the treatment of relativity. The exact
FLAPW eigenvalues are generated scalar relativistically
while the standard k ·p formula assumes the nonrelativistic

TABLE I. Electronic band gradients of Si X1 bands along the �
line obtained by the first-order k ·p perturbation. Values from the
present LAPW k ·p formula, which are proved to be accurate from
the analysis given in Fig. 2, are compared with those from the
standard k ·p formula of Eq. �3�. Units are in eV Å.

Band Valence X1 Conduction X1

Present k ·p �6.6836 �1.5328

Standard k ·p �6.6859 �1.5365
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FIG. 1. �Color online� Energy-band dispersion of Si obtained by
the variational k ·p calculation �red lines� with taking the reference
point at �. The k ·p matrices were constructed to second order
based on the present LAPW k ·p formula. Black dots are the exact
FLAPW bands. Valence-band top is set at 0 eV.
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FIG. 2. �Color online� Analyzing the error in the band energies
of Si calculated by the second-order perturbation theory with the
k ·p matrices constructed from the present LAPW k ·p formula. The
root-mean-square error of the band energies ��E� divided by q3,
where q is the distance in k space from the k ·p reference point, is
plotted as a function of q. Analysis is done for several high-
symmetry lines and for several k ·p reference points. ��E� is mea-
sured for the lowest seven bands when the reference point is taken
at � or L while the lowest six bands at K and X.

0 0.01 0.02 0.03
q [1/Å]

0

0.2

0.4

0.6

0.8

1.0

[eV
Å
]

|∆
Ε|
/q
2

2

FIG. 3. �Color online� Same as Fig. 2 but with the k ·p matrix
constructed from the standard k ·p formula given by Eq. �4�. ��E�
divided by q2 instead of q3 is plotted.
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kinematics. However, the discrepancy in the curvatures is so
large, more than 10% for the valence bands, and is attributed
to the IBS problem.19

We carried out the same type of test calculation on Cu. It
is known that the k ·p method has difficulty in dealing with
localized states such as semicore states d and f bands.7,23

Results by the second-order perturbation calculation with the
reference point � are shown in Fig. 4 and Table III. The
results with the standard k ·p formula completely collapse
for the 3d bands as revealed in Fig. 4 in the middle and upper
panels on the right-hand side. It even misses the sign of
curvature for the �3 band departing from �12 and that for the
�2� band �see also Table III�. In sharp contrast to this, the
present scheme produces excellent results �the left-hand side
of Fig. 4�. The error analysis given in Fig. 5 shows that the
band curvatures from the present formula are free from er-
rors. Among the reference points and dispersion lines tested
in Fig. 5, only � bands departing from K have finite band
gradients. Their values are listed in Table IV. Like in the case
of Si, the standard k ·p formula produces reasonable band
gradients. The reason for this manifests itself in the pertur-
bative formula �Eq. �33��. The band gradient �or the first-
order energy shift� can be obtained from the information of
the relevant state only. The band curvature �or the second-
order energy shift� needs the information of the complete
wave functions of H and is apparently subjected to the IBS
problem.19

For 3d bands, both the perturbative and variational calcu-
lations with the second-order k ·p matrices are reasonably
good only in the close vicinity of the reference point �typi-
cally within 0.3 Å−1�. Higher-order H�g� and S�g� are neces-
sary to make the applicable range wider. By taking Nkp=16,
it covers the entire BZ as shown in Fig. 6.

For the test purposes, we have used full-band k ·p matri-
ces. In practical use of the present method, one may like to

reduce the size of the k ·p matrices, N, while maintaining
some desired accuracy. In order to have a rough idea on how
much we can reduce, we calculated the Si curvatures at the
valence-band top, �25� , with the second-order perturbation
theory by changing N. The calculated values showed quick
convergence. At N=15, where the unoccupied bands within
the energy separation of 15 eV from the valence-band top
were taken into account in addition to the occupied bands,
the error of the calculated curvatures was already reduced to
1%. Although such convergence behavior should be different
for each material and each band and thus one has to monitor
it, including bands within the energy interval of about 20 eV
from the band marked would provide reasonable results. In
performing variational k ·p calculations with single reference
point, it seems that one needs to include more states. In the
calculation of Fig. 6, we cut N down to one third of the full
size. The band dispersion generated was not in good quality.
To have a good description for the occupied bands through-
out the BZ, we had to increase N to half of the full size.

TABLE II. Longitudinal band curvatures of Si at X normalized
to that of a free-electron band 1 /m�=3.81 eV Å2� obtained by the
second-order k ·p perturbation. The curvatures by the present
LAPW k ·p formula, which are proved to be accurate from Fig. 2,
are compared with those by the standard k ·p formula.

Band Valence X1 X4 Conduction X1

Present k ·p 0.50842 0.77433 1.1699

Standard k ·p 0.57253 0.87291 1.1746

TABLE III. Longitudinal electronic band curvatures of Cu evaluated at � for bands appeared in Fig. 4.
The curvatures are deduced by the second-order k ·p perturbation and are normalized to that of a free-
electron band 1 /m. The values by the present LAPW k ·p formula, which are considered to be exact, are
compared with those by the standard k ·p formula.

Band �1

�25� �12

�1 �3 �2� �5 �3 �1 �2

Present k ·p 1.0597 −0.2332 0.2120 −0.3213 0.2560 −0.0875 −0.2933 0.1183

Standard k ·p 0.9741 −0.1881 0.6406 0.2318 0.4306 0.2793 −0.1667 0.7254

Λ0.2 0.0
q[1/Å]

-9.5

-9.4

-9.3

∆ 0.2

-3.2

-3.1

-3.0

EN
ER
GY
[eV

]

-2.3

-2.2

Present

0.2 0.0
-9.5

-9.4

-9.3

0.2

-3.2

-3.1

-3.0

Standard

Λ
q[1/Å]

∆

-2.3

-2.2
3Λ

1Λ

3Λ

1∆

2∆

2∆

5∆

'

Γ12

Γ '25

Γ1

FIG. 4. �Color online� Energy-band dispersion of Cu by the
second-order k ·p perturbation �red lines� with taking the reference
point at �. Plot is done along � and � lines in the vicinity of � and
compared with the exact FLAPW bands �black dots�. Energy is
measured from the Fermi level. Left panel: using the k ·p matrices
constructed from the present LAPW k ·p formula. Right panel:
standard formula.
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IV. CONCLUSIONS

We derived the formula for the k derivatives of the sphere
matching coefficients, from which we constructed the LAPW
k ·p formalism. The IBS corrections are shown to exist in-
side the MT region and are easily calculated by transforming
the usual sphere matrices. The explicit derivation of the IBS
correction terms allows us to perform efficient k ·p calcula-
tions without adding extra variational degrees of freedom to
the basis-function set. We demonstrated that our formula de-
livers the exact electronic band gradients and curvatures.
Variational k ·p calculations with a single reference point are
in principle possible by taking the q-truncation order suffi-
ciently high. We are going to employ the present scheme to
evaluate the long-wavelength limit of the ingredients in the
GW self-energy.
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APPENDIX A: HERMITICITY OF THE k·p MATRIX

In the LAPW method, it is known that the formula of the
Hamiltonian matrix elements is not explicitly Hermitian if it
is derived straightforwardly. This is due to the kinetic-energy
part T and the finite l truncation in the sphere augmentation
function. Popular solutions to this would be �i� to use the
expression given by Koelling and Arbman,26 which is made
explicitly Hermitian by applying the technique of spherical
Bessel function summation,27 or �ii� to simply enforce the
Hermiticity28 by taking the Hermite conjugate of the straight-
forward expressions: Tij ⇐ �Tij +Tji

� � /2.
Corresponding to this issue in the ordinary LAPW calcu-

lations, our first-order k ·p Hamiltonian matrix H��� reveals
the same problem and is subjected to the following modifi-
cations. If one uses the solution �i�, the matrix element of the
spherical part of the Hamiltonian in terms of the atomic basis
should be

�L��HMT�L���� = �LL��
l + �lulul� �lu̇lul�

�lu̇lul� 
lNl + �lu̇lu̇l�
� ,

�A1�

which is Hermite in � space. Here Nl is the norm of u̇l and
�l=1 / �u̇l ,ul�S. For the solution �ii�,

TABLE IV. Electronic band gradients of Cu evaluated at K for the lowest five bands. Values obtained by
the first-order perturbation with the present LAPW k ·p formula are compared to those with the standard k ·p
formula. Units are in eV Å. Band numbering is in ascending order of energy.

Band 1 2 3 4 5

Present k ·p −1.4516 −0.9337 2.2431 1.0661 0.6387

Standard k ·p −1.4569 −0.9326 2.2436 1.0699 0.6400
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FIG. 5. �Color online� Analyzing the error in the band energies
of Cu calculated by the second-order perturbation with using the
k ·p matrices constructed from the present k ·p formula. The root-
mean-square error of the band energies ��E� divided by q3 is plot-
ted. ��E� is measured for the lowest six bands around � and L while
the lowest five bands around K and X.

W Q
-10

-8

-6

-4

-2

0

2

EN
ER
GY

[eV
]

L Λ Γ ∆ XSK Σ Γ

FIG. 6. �Color online� Energy-band dispersion of Cu obtained
by the variational k ·p calculation �red lines�. The k ·p matrices
were constructed based on the present LAPW k ·p formula with
Nkp=16. The reference point was set at �. Black dots are the exact
FLAPW bands.
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�L��HMT�L���� = �LL�� 
l 1/2
1/2 
lNl

� . �A2�

In either case, the matrix of the interstitial velocity operator
should be calculated by

vIij =
1

2
���i�

− i�

m
� j�

I
+ H.c.� . �A3�

APPENDIX B: GENERALIZED PERTURBATION
THEORY

We discuss a generalized perturbation theory and derive
formulas for perturbed wave functions and eigenenergies to
second order in the perturbation strength. Notations are in-
dependent from those of the text. Suppose that we have
solved the eigenproblem for an unperturbed system H�0�

variationally,

�i
�0� = �

l

�l
�0�Zli, �B1�

��i
�0��H�0��� j

�0�� � Hij
�0� = Ei

�0��ij , �B2�

��i
�0��� j

�0�� � Sij
�0� = �ij . �B3�

Usually, the perturbed wave functions are expressed by
means of a liner combination of ��0�. Such an approach im-
plicitly assumes that the variational basis-function set 	��0�

remains unchanged against the applied perturbation. We con-
sider a general case that the basis functions do change their
form by the perturbation, while we assume that we know
their dependency in an explicit given form. We define the
following to be used as an expansion basis set for the per-
turbed wave functions:

�i = �
l

��l
�0� + ��l

�1� + �2�l
�2� + ¯�Zli

= �i
�0� + ��i

�1� + �2�i
�2� + ¯ . �B4�

� is a real parameter and its power represents the perturba-
tion order. This 	�
 is no longer orthonormal to each other,

Sij � ��i�� j� = �ij + ����i
�1��� j

�0�� + ��i
�0��� j

�1���

+ �2���i
�2��� j

�0�� + ��i
�1��� j

�1�� + ��i
�0��� j

�2���

= Sij
�0� + �Sij

�1� + �2Sij
�2� + ¯ . �B5�

Evaluation of the Hamiltonian matrix element would be
more complicated since we have both the change in the
Hamiltonian itself and the change in the basis 	�
. Never-
theless we can write it in the form

Hij � ��i�H�� j� = Hij
�0� + �Hij

�1� + �2Hij
�2� + ¯ . �B6�

In order to comprehend general cases, we are going to
deal with M-fold degenerate states in the unperturbed system

with the eigenvalue EM
�0�. There exists an indeterminacy in the

unperturbed eigenfunctions 	��
�0�
 ���M� in the sense that

any unitary transformation within the subspace M can be
taken. The important task is, with the exact analogy to the
usual degenerate perturbation theory with Sij =�ij, to find a
unitary matrix C�m

�0� , which transforms the original naive
eigenfunctions 	��

�0�
 into the zeroth-order wave functions
	�m

�0�
 that bear physical relevance to the perturbed wave
functions 	�m
 in the way that each �m

�0� is continuously
connected to �m in the limit of �→0. We write

�m
�0� = �

��M

��
�0�C�m

�0� . �B7�

Since the derivation of formulas goes at length, we think
that it is better to write the final results here in order to
provide in which direction we will go. The first- and second-
order changes in energy for a state m are given by

Em
�1� = �C�0�†
�1�C�0��mm, Em

�2� = �C�0�†
�2�C�0��mm �B8�

with


���
�1� = H���

�1� − EM
�0�S���

�1� , �B9�


���
�2� = H���

�2� − EM
�0�S���

�2� − �
���M

�S���
�1�


����
�1� + 
���

�1� S����
�1� �/2

+ �
j�M

�H�j
�1� − EM

�0�S�j
�1���Hj��

�1� − EM
�0�Sj��

�1� �

EM
�0� − Ej

�0� . �B10�

These matrices 
�1� and 
�2� are defined in the subspace M
with the original states � and thus can be calculated in ad-
vance without knowing C�0�. The perturbed wave function
can also be written by separating out C�0� in the following
way:

�m = �
��M

��
i

all

�i��i� + �ci�
�1� + �2ci�

�2� + ¯��C�m
�0� .

�B11�

In the square brackets all are labeled by the original states.
When the summation i runs over the degenerate block M in
concern, we must use the original � representation of �. For
i�M, the coefficients c�1� and c�2� are given by

ci�
�1� = −

1

2
Si�

�1�, �B12�

ci�
�2� = −

1

2
Si�

�2� +
3

8 �
���M

Si��
�1� S���

�1� −
1

2 �
k�M

VikM
�1� Vk�M

�1�

��Mk�2

−
1

2 �
k�M

Sik
�1�Vk�M

�1� + VikM
�1� Sk�

�1�

�Mk
. �B13�
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For i�M,

ci�
�1� =

Vi�M
�1�

�Mi
, �B14�

ci�
�2� =

Vi�M
�2�

�Mi
− �

���M

�Vi��i
�1� V���M

�1�

��Mi�2 +
Vi��M

�1� S���
�1�

2�Mi
� .

�B15�

We have introduced the following abbreviations:

�ij = Ei
�0� − Ej

�0�, �B16�

Vijn
�1� = Hij

�1� − En
�0�Sij

�1�, �B17�

VijM
�2� = Hij

�2� − EM
�0�Sij

�2� + �
k��M�

VikM
�1� VkjM

�1� /�Mk. �B18�

We are going to derive the above formulas for 
�1�, 
�2�,
c�1�, and c�2�, and also we will give the prescription for how
to determine C�0�. In this derivation it is convenient to write
the perturbed wave function �m by separating the expansion
sums inside and outside the subspace M as

�m = �
��M

��C�m + �
j�M

� jAjm. �B19�

Here C�0� is not separated out yet since at this point it is not
clear whether such separation is possible. At the end we will
see that Eq. �B19� can be transformed into the form of Eq.
�B11�. The equation H�m=Em�m becomes

�
�

�H − Em���C�m + �
j

�H − Em�� jAjm = 0. �B20�

By multiplying �i
� �i�M� from the left, expanding each

component in terms of power series of �, and equating the
coefficients of � and �2, we obtain

Aim
�1� =

1

�Mi
�
�

Vi�M
�1� C�m

�0� , �B21�

Aim
�2� =

�
�

�Vi�M
�2� − Em

�1�Vi�i
�1�/�Mi�C�m

�0� + �
�

Vi�M
�1� C�m

�1�

�Mi

�B22�

Next we pay attention to C’s. Analogous to the usual pertur-
bation theory, C�1� and C�2� are indeterminable but con-
strained by the orthonormality condition

��m��m�� = �mm�. �B23�

At zeroth order this leads to ��C�m
�0��C�m�

�0� =�mm�. Equating
the coefficients of � in Eq. �B23�, we have

�
�

�C�m
�1��C�m�

�0� + C�m
�0��C�m�

�1� � = − �
���

C�m
�0��S���

�1� C��m�
�0� .

Based on the convention, we shall take ��C�m
�0��C�m�

�1� as a half
of the right-hand side. This yields

C�m
�1� = −

1

2�
��

S���
�1� C��m

�0� .

Equating the coefficients of �2 in Eq. �B23�, we get

�
�

�C�m
�2��C�m�

�0� + C�m
�0��C�m�

�2� � = 2�
���

C�m
�0��QM

���C��m�
�0�

with

QM
��� = −

1

2
S���

�2� +
3

8�
��

S���
�1� S����

�1� −
1

2 �
k�M

V�kM
�1� Vk��M

�1�

��Mk�2

−
1

2 �
k�M

S�k
�1�Vk��M

�1� + V�kM
�1� Sk��

�1�

�Mk
.

With the same choice as for C�1�, we set

C�m
�2� = �

��

QM
���C��m

�0� .

One may recognize that C�1� and C�2� have been obtained in
the form

C�m
�g� = �

��

c���
�g� C��m

�0� , g = 1,2

with c�1� and c�2� defined by Eqs. �B14� and �B15�, respec-
tively.

In Eq. �B20�, multiplying ��
� from the left, we obtain

O���:�
��

�
���
�1� − Em

�1������C��m
�0� = 0, �B24�

O��2�:�
��

�F���m − Em
�2������C��m

�0� = 0 �B25�

with 
�1� defined by Eq. �B9� and

F���m = V���M
�2� − �S���

�1� Em
�1� + �

��


���
�1� S����

�1� �/2. �B26�

The first-order equation �B24�, which is a standard M �M
secular equation, should be solved first. By diagonalizing the
matrix 
�1�, we can get the first-order change in energy,

E�1� = U†
�1�U �B27�

where U represents the eigenvectors of 
�1�. If all the degen-
eracy is lifted by this process, we can set C�0�=U and Eq.
�B25� is interpreted as an equation just to determine the
second-order energy Em

�2�= �U†FmU�mm. If the degeneracy re-
mains, Eq. �B25� must be used to determine not only E�2� but
also C�0� by further rotating U within each of the block where
E�1�’s are the same. This can be done automatically based on
the following procedure. Calculate the matrix 
�2� defined by
Eq. �B10� and transform it via U,

k ·p FORMULA FOR USE WITH LINEARIZED… PHYSICAL REVIEW B 78, 245107 �2008�

245107-11



Gmm� = �U†
�2�U�mm� �B28�

One can prove that this G is connected to F���m given in Eq.
�B26� by the relation Gmm�=�U�m

� F���m�U��m� since 
�1� is
diagonal in the m space. Modify this G so that its off-
diagonal elements vanish unless they are within the same
degenerate block

Gmm�
� = �mm�Em

�1� +�Gmm�, Em
�1� = Em�

�1�

0, Em
�1� � Em�

�1�  �B29�

The first term is added just to maintain the ordering of the
eigenstates m determined by the first-order perturbation. By
back transforming G�, we make G���

� = �UG�U†����. By di-
agonalizing G�, we can have C�0� and E�2�,

E�1� + E�2� = C�0�†G�C�0�. �B30�

This procedure is valid also for the case that the degeneracy
is fully removed at the first-order perturbation.

In this way, C�0� can be deduced numerically by handling
the matrices 
�1� and 
�2�. The first- and second-order
changes in energy for the state m can be written in terms of
these matrices and C�0�,

Em
�g� = �C�0�†
�g�C�0��mm, g = 1,2

By construction C�0� always diagonalizes 
�1� but not 
�2�.
However, its off-diagonal elements if exist are negligible
compared to the energy intervals in E�1�’s. By using the ex-
pressions obtained for E�1� and C�1�, we can rewrite the ex-
pansion coefficients �B21� and �B22� in the form of

Aim
�g� = �

�

ai�
�g�C�m

�0� , g = 1,2

with

ai�
�1� =

1

�Mi
Vi�M

�1� ,

ai�
�2� =

Vi�M
�2�

�Mi
− �

��

�Vi��i
�1� V���M

�1�

��Mi�2 +
Vi��M

�1� S���
�1�

2�Mi
� .

One should recognize that we have proved all the formulas
given at the beginning �Eqs. �B8�–�B15��.

We shall rewrite the perturbed wave function of Eq. �B11�
by calling the function within the square brackets as ��,

�m = �
��M

��C�m
�0� , �B31�

�� = �
i

all

�i��i� + ci�
�1� + ci�

�2� + O��3�� . �B32�

There are some quantities for which the knowledge of C�0� is
not required. As an example of such cases, we discuss the
following density matrix:

D = �
n

��EF − En���n���n� , �B33�

where EF is the Fermi level and ��EF−En� gives the occu-
pancy of the perturbed state n. We assume that EF is not
changed by the applied perturbation.29 This D has a contri-
bution from the states discussed above that show M-fold
degeneracy in the unperturbed system,

DM � �
m�M

��EF − Em���m���m� . �B34�

We want to have a formula of DM, in which the rotation
matrix C�0� is not contained. The discussion in what follows
can straightforwardly be applied to the calculation of charge
density �n��EF−En��n

��n.
For metallic systems, the occupation is subjected to

change by the perturbation. Taylor expanding it, we have

��EF − Em� = �M − �M� Em
�1� − �M� Em

�2� +
1

2
�M� �Em

�1��2 + O��3�

�B35�

with the abbreviations defined by

�M = ��EF − EM
�0�� , �B36a�

�M� = � ���x�
�x

�
x=EF−EM

�0�
, �B36b�

�M� = � �2��x�
�x2 �

x=EF−EM
�0�

, �B36c�

which are all zeroth-order quantities. The actual formulas of
�� and �� depend on the method to calculate � and should be
found easily. To demonstrate how Eq. �B34� is transformed
into the original 	�
 representation, it will be enough to show
how we convert the term containing �Em

�1��2. Making use of
Eq. �B8� and the fact that C�0�†
�1�C�0� is diagonal,

�
m

�Em
�1��2��m���m�

= �
mm�m�

�C�0�†
�1�C�0��mm��C
�0�†
�1�C�0��m�m���m���m��

= �
�����


���
�1�


����
�1� ��������� .

Note that the density matrix is no more diagonal in the �
space. Substituting Eq. �B32� for ��, DM is written in the
form of DM =�ij��i��� j�DM�ij�. The coefficients are given
by

DM
�0��ij� = �M���Mi��ij , �B37a�

DM
�1��ij� = �M����Mj�cij

�1� + ���Mi�cji
�1���

− �M� ���Mi����Mj�
ij
�1�, �B37b�
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DM
�2��ij� = �M����Mj�cij

�2� + ���Mi�cji
�2�� + �

k

���Mk�cik
�1�cjk

�1���
+

1

2
�M� ���Mi����Mj��

k

���ik�
ik
�1�
kj

�1�

− �M� ����Mj��
k

��� jk�cik
�1�
kj

�1�

+ ���Mi��
k

���ik�
ik
�1�cjk

�1�� + ���Mi����Mj�
ij
�2�� .

�B37c�

Summing up DM’s, the density matrix is found in the form of
D=���i��� j�D�ij� and

D�0��ij� = �i�ij , �B38a�

D�1��ij� = � jcij
�1� + �icji

�1�� − �i����ij�
ij
�1�, �B38b�

D�2��ij� = � jcij
�2� + �icji

�2�� + �
k

�kcik
�1�cjk

�1�� − �i����ij�
ij
�2�

+
1

2
�i����ij��

k

���ik�
ik
�1�
kj

�1� − � j��
k

��� jk�cik
�1�
kj

�1�

− �i��
k

���ik�
ik
�1�cjk

�1��. �B38c�

These coefficient matrices, DM�ij� and D�ij�, are Hermite.
For insulating cases, we can set ��=��=0.
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